

# User Guide for FEBFAN23SV04T\_LVA Evaluation Board

# **High-Efficiency Synchronous Buck Converter for DDR Termination**

Featured Product: FAN23SV04T

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com



# **Table of Contents**

| 1.  | Introduction                                                                                                             |   |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|     | <ul><li>1.1. Typical Applications</li><li>1.2. Features</li></ul>                                                        |   |  |  |  |
| 2.  | Evaluation Board Specifications                                                                                          | 3 |  |  |  |
| 3.  | Schematic                                                                                                                | 4 |  |  |  |
| 4.  | Test Setup                                                                                                               | 5 |  |  |  |
|     | <ul><li>4.1. Test Equipment</li><li>4.2. Test Setup</li></ul>                                                            |   |  |  |  |
| 5.  | Configuration                                                                                                            |   |  |  |  |
|     | <ul> <li>5.1. V<sub>DDQ</sub> Input</li> <li>5.2. Enable Selection</li> <li>5.3. On board transient generator</li> </ul> | 6 |  |  |  |
| 6.  | Test Procedure                                                                                                           | 7 |  |  |  |
|     | <ul><li>6.1. Measurement Procedure.</li><li>6.2. List of Test Points and Connections.</li></ul>                          |   |  |  |  |
| 7.  | Performance Data and Characteristic Curves                                                                               |   |  |  |  |
| 8.  | Printed Circuit Board9                                                                                                   |   |  |  |  |
| 9.  | Bill of Materials                                                                                                        |   |  |  |  |
| 10. | ). Revision History                                                                                                      |   |  |  |  |



This user guide supports the evaluation board for the FAN23SV04T synchronous buck regulators for Double Date Rate (DDR) tracking applications. It should be used in conjunction with the FAN23SV04T datasheet. Please visit Fairchild's website at www.fairchildsemi.com.

#### 1. Introduction

This evaluation board highlights the FAN23SV04T synchronous buck regulators for DDR-tracking applications, and combines Fairchild's constant on-time control architecture with an integrated MOSFETs to supply high-efficiency Point of Load (POL) solutions.

#### 1.1. Typical Applications

- Servers
- NVDC Notebooks
- Telecommunications
- Game Consoles
- Storage

#### 1.2. Features

- V<sub>DDO</sub> Input Functions as Reference Input
- Internal Resistive Divider Programs V<sub>OUT</sub> =0.5 V<sub>DDQ</sub>
- Configurable Enable Function
- On-board Transient Generator with Adjustable Load Current Slew Rate
- Internal Regulator; Requires No External Bias Supply
- Test Points for Probing Critical Waveforms, Efficiency Measurements

# 2. Evaluation Board Specifications

**Table 1. Evaluation Board Specifications** 

| Description            | Symbol           | Value               | Comments             |
|------------------------|------------------|---------------------|----------------------|
| Input Voltage          | PVIN             | 7-15 V              |                      |
| V <sub>DDQ</sub> Input | VDDQ             | 0-3 V               |                      |
| Output Voltage         | V <sub>OUT</sub> | 0.6 V               |                      |
| Switching Frequency    | f <sub>SW</sub>  | 500 kHz             |                      |
| Output Load Current    | I <sub>OUT</sub> | 0-4 A               |                      |
| Output Current Limit   |                  | 120%                | Maximum load current |
| PCB Size               |                  | 7 cm X 7 cm         |                      |
| PCB Layer              |                  | 4 Layers            |                      |
| PCB Thickness          |                  | 1.6 mm              |                      |
| PCB Copper Thickness   |                  | 1 oz-1 oz-1 oz-1 oz |                      |



# 3. Schematics

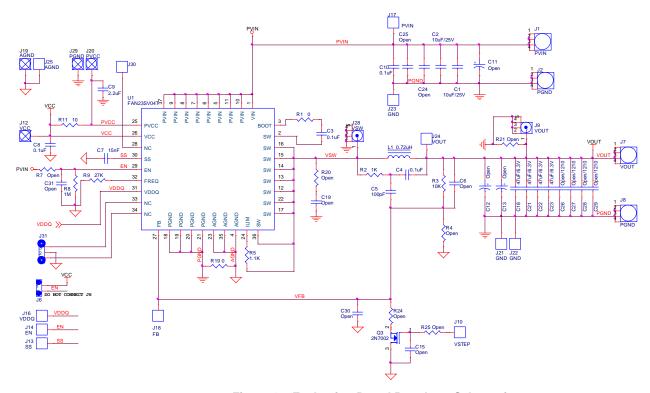



Figure 1. Evaluation Board Regulator Schematic

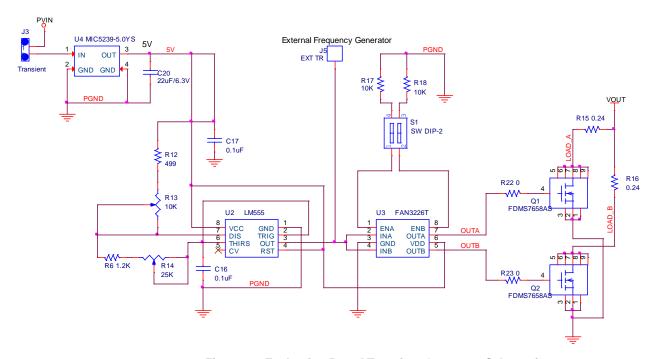



Figure 2. Evaluation Board Transient Generator Schematic



# 4. Test Setup

#### 4.1. Test Equipment

- 0-15 V / 5 A power supply for input voltage
- Oscilloscope to view waveforms
- 0-5 V / 0.1 A power supply for optional external enable signal

## 4.2. Test Setup

- Adjust V<sub>IN</sub> power supply, V<sub>DDO</sub> supply, and external EN supply to 0 V.
- Connect V<sub>IN</sub> supply to PVIN (J1) and GND (J2).
- Connect V<sub>DDO</sub> supply to VDDQ (J16) and AGND (J19).
- Connect external enable source to EN (J14) and AGND (J25).
- Optional filter can be installed to filter  $V_{DDQ}$  track input source local to evaluation board if needed. With filter installed,  $V_{DDQ}$  voltage at (J16) is half (½) the voltage of the  $V_{DDQ}$  supply.

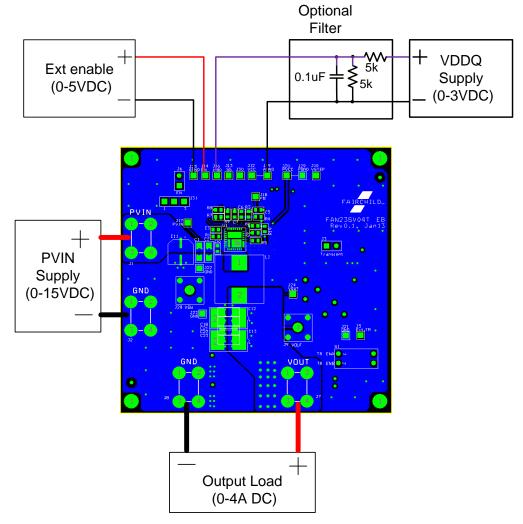



Figure 3. Test Setup for FAN23SV04T Tracking Application



# 5. Configuration

#### 5.1. V<sub>DDQ</sub> Input

Figure 3 shows an optional filter on the  $V_{DDQ}$  (tracking) input. This filter is not required for operation, but is useful to filter the  $V_{DDQ}$  supply voltage input, which is used to develop the reference for the output voltage. This can help reduce frequency jitter.

#### 5.2. Enable Selection

The FAN23SV04T evaluation board can be enabled using an external enable logic signal as shown in Figure 3. R8 can be populated with 1 M $\Omega$  to hold EN LOW by default.

#### 5.3. On board transient generator

Transient generator circuitry, shown in Figure 2, is included on the bottom of the board to facilitate testing of extremely fast transient loads, with the following usage guidelines:

- A shorting jumper installed in J3 enables the transient generator.
- Open J3 to conduct efficiency testing.
- R13 and R14 adjust the frequency and duty cycle of the 555 timer.
- J5 can be used to monitor transient frequency and to trigger oscilloscope.
- Switch S1 enables turn-on of load switch Q1, Q2, or both simultaneously.
- Load applied with Q1 ON is equal to V<sub>OUT</sub>/R15; with Q2 ON is equal to V<sub>OUT</sub>/R16.
- Use low duty cycle to minimize power dissipation on PCB.
- R22/R23 can be increased in value to reduce load current slew rate.



#### 6. Test Procedure

#### **6.1. Measurement Procedure**

- 1. Set up equipment and board as shown in Figure 3.
- 2. For efficiency testing, open J3 (disable transient generator).
- 3. Adjust load to sink 0 A.
- 4. Monitor  $V_{IN}$  on J17(+) and J23(-) as voltage is increased from 0 V to 12 V.
- 5. Adjust the external enable signal to 3.3 V to enable converter operation.
- 6. Adjust the  $V_{DDQ}$  signal from 0 to 1.5 V, monitoring on the VDDQ pin.
- 7. Monitor PVCC on J20(+) and J19(-) as voltage is increased from 0 to 5 V.
- 8. Monitor  $V_{OUT}$  on J24(+) and J23(-).
- 9. With  $I_{OUT}$  from 0 to maximum  $I_{OUT}$ ;  $V_{OUT}$  should remain in regulation.
- 10. To disable the converter, adjust external enable signal to 0 V.
- 11. After converter is disabled, reduce PVIN to 0 V.

#### 6.2. List of Test Points and Connections

| Test Points                         | Name                           | Description                                          |
|-------------------------------------|--------------------------------|------------------------------------------------------|
| J1 PVIN                             |                                | VIN connection (+)                                   |
| J2                                  | GND                            | VIN connection (-)                                   |
| J3                                  | Transient                      | Connects PVIN to power transient generator           |
| J5                                  | Ext TR                         | External Transient Generator Frequency Monitor       |
| J6                                  | EN                             | Connects EN to VCC for auto-enable with non-SV parts |
| J7                                  | VOUT                           | V <sub>OUT</sub> connection (+)                      |
| J8                                  | GND                            | V <sub>OUT</sub> connection (-)                      |
| J9                                  | VOUT                           | V <sub>OUT</sub> scope jack                          |
| J10                                 | VSTEP                          | Input to optional V <sub>OUT</sub> step circuit      |
| J12                                 | VCC                            | Monitor VCC voltage                                  |
| J13                                 | SS                             | SS(Soft-Start) pin 30                                |
| J14                                 | EN                             | Enable input to controller                           |
| J16                                 | VDDQ                           | VDDQ Track input                                     |
| J17                                 | PVIN                           | Input voltage (+)                                    |
| J18                                 | FB                             | Feedback pin 27                                      |
| J19                                 | AGND                           |                                                      |
| J20                                 | PVCC                           | PVCC supply input (+)                                |
| J21                                 | GND                            |                                                      |
| J22                                 | GND                            | Input voltage (-)                                    |
| J23                                 | GND                            | V <sub>OUT</sub> monitor (-)                         |
| J24                                 | VOUT                           | V <sub>OUT</sub> monitor (+)                         |
| J25 AGND AGND reference for EN inpu |                                | AGND reference for EN input                          |
| J28                                 | J28 VSW Switch node scope jack |                                                      |
| J29                                 | PGND                           | PVCC supply input (-)                                |
| J30                                 |                                | No connect                                           |
| J31                                 |                                | No connect                                           |



# 7. Performance Data and Characteristic Curves

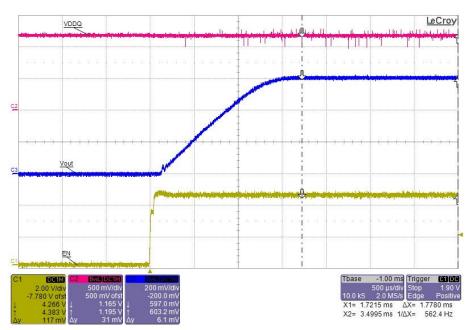



Figure 4. Typical Startup Waveforms with  $V_{\text{DDQ}}$  before EN Applied

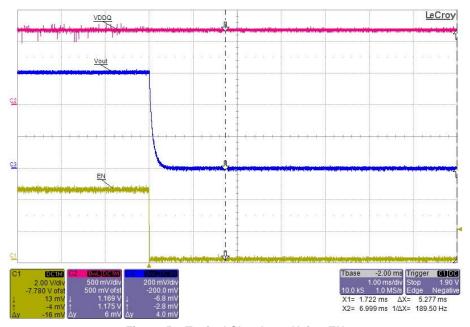



Figure 5. Typical Shutdown Using EN



# 8. Printed Circuit Board

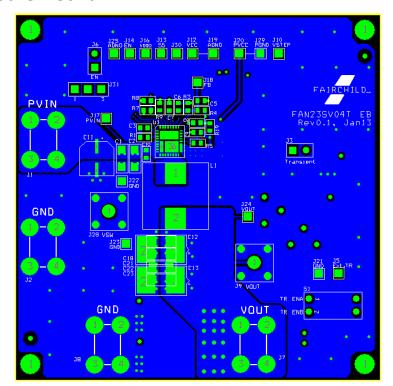



Figure 6. Top Side

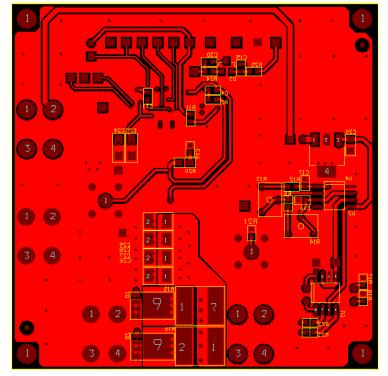



Figure 7. Bottom Side



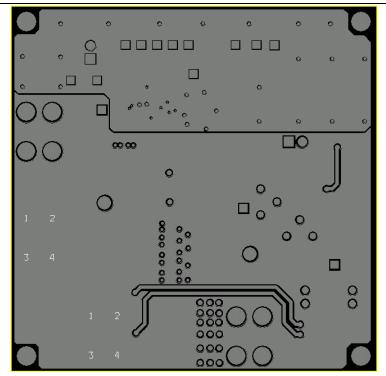



Figure 8. Inner Layer 1

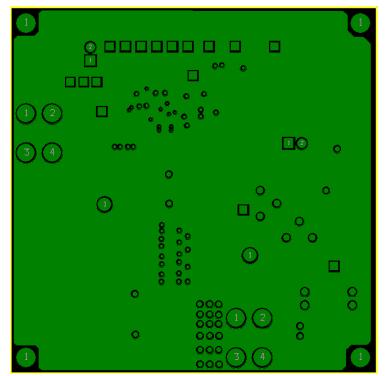



Figure 9. Inner Layer 2



# 9. Bill of Materials

| Reference                  | Value      | Description                                  | Manufacturer PN                      | Manufacturer            | Case         | Qty |
|----------------------------|------------|----------------------------------------------|--------------------------------------|-------------------------|--------------|-----|
| C1                         | 10 μF      | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | TMK316B7106KL-TD                     | Taiyo Yuden             | 1206         | 1   |
| C2                         | 10 μF      | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | TMK316B7106KL-TD                     | Taiyo Yuden             | 1206         | 1   |
| С3                         | 0.1 μF     | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | C1608X7R1E104K                       | TDK                     | 0603         | 1   |
| C4                         | 0.1 μF     | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | C1608X7R1E104K                       | TDK                     | 0603         | 1   |
| C5                         | 100 pF     | Capacitor, SMD,<br>Ceramic, NPO, 50 V        | C1608COG1H101J                       | TDK                     | 0603         | 1   |
| C7                         | 0.015 μF   | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | C1608X7R1E153K                       | TDK                     | 0603         | 1   |
| C8                         | 0.1 μF     | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | C1608X7R1E104K                       | TDK                     | 0603         | 1   |
| C9                         | 2.2 µF     | Capacitor, SMD,<br>Ceramic, X5R, 25 V        | C1608X5R1E225M                       | TDK                     | 0603         | 1   |
| C10                        | 0.1 μF     | Capacitor, SMD,<br>Ceramic, X7R, 25 V        | C1608X7R1E104K                       | TDK                     | 0603         | 1   |
| C18                        | 47 μF      | Capacitor, SMD,<br>Ceramic, 6.3 V            | C3216X5R0J476M                       | TDK                     | 1206         | 1   |
| C21                        | 47 μF      | Capacitor, SMD,<br>Ceramic, 6.3 V            | C3216X5R0J476M                       | TDK                     | 1206         | 1   |
| C22                        | 47 μF      | Capacitor, SMD,<br>Ceramic, 6.3 V            | C3216X5R0J476M                       | TDK                     | 1206         | 1   |
| C23                        | 47µF       | Capacitor, SMD,<br>Ceramic, 6.3 V            | C3216X5R0J476M                       | TDK                     | 1206         | 1   |
| R1                         | 0 Ω        | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R2                         | 1 kΩ       | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R3                         | 10 kΩ      | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R5                         | 1.1 kΩ     | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R8                         | 1 ΜΩ       | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R9                         | 27 kΩ      | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R11                        | 10 Ω       | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| R19                        | 0 Ω        | RES, SMD, 1/10W                              |                                      |                         | 0603         | 1   |
| L1                         | 720 nH     | Inductor, Power                              | 744325072                            | Wurth                   |              | 1   |
| U1                         | FAN23SV04T | 4 A COT Regulator                            | FAN23SV04T                           | Fairchild               | MLP<br>5.5x5 | 1   |
| J1-J2, J7-J8               |            | Terminal, 15 A, Screw,<br>Vertical, PC Mount | 8191                                 | Keystone                |              | 4   |
| J10,J12-14,<br>J16-25, J29 |            | Testpin, Gold, 40 mil                        | 3103-2-00-21-00-00-08-0<br>(DS10P11) | Mill-Max<br>(Young Jin) |              | 15  |
| PCB                        |            | PCB, FAN23SV04T<br>EB Rev 0.1, Jan 13        |                                      |                         |              | 1   |

Continued on the following page...



| Reference           | Value      | Description                           | Manufacturer PN         | Manufacturer | Case        | Qty |  |  |
|---------------------|------------|---------------------------------------|-------------------------|--------------|-------------|-----|--|--|
| Transient Generator |            |                                       |                         |              |             |     |  |  |
| C16                 | 0.1 μF     | Capacitor, SMD,<br>Ceramic, 25 V, X7R | C1608X7R1E104K          | TDK          | 0603        | 1   |  |  |
| C17                 | 0.1 μF     | Capacitor, SMD,<br>Ceramic, 25 V, X7R | C1608X7R1E104K          | TDK          | 0603        | 1   |  |  |
| C20                 | 22 μF      | Capacitor, SMD,<br>Ceramic, 10 V, X5R | LMK212BJ226MG-T         | TAIYO YUDEN  | 0805        | 1   |  |  |
| R6                  | 1.2 kΩ     | Resistor, SMD, 1/10W                  | ERJ-3EKF1201V           | Panasonic    | 0603        | 1   |  |  |
| R12                 | 499 Ω      | Resistor, SMD, 1/10W                  | ERJ-3EKF4990V           | Panasonic    | 0603        | 1   |  |  |
| R13                 | 10 kΩ      | Pot, 0.25W                            | 3266W-1-103LF           | Bourns       |             | 1   |  |  |
| R14                 | 25 kΩ      | Pot, 0.25W                            | 3266W-1-253LF           | Bourns       |             | 1   |  |  |
| R15-R16             | 0.24 Ω     | Resistor, SMD, 1W                     | ERJ-1TRQFR24U           | Panasonic    | 2512        | 2   |  |  |
| R17-R18             | 10 kΩ      | Resistor, SMD, 1/10W                  | ERJ-3EKF1002V           | Panasonic    | 0603        | 2   |  |  |
| R22-R23             | 0          | Resistor, SMD, 1/10W                  | ERJ-3GEY0R00V           | Panasonic    | 0603        | 2   |  |  |
| U2                  | LM555      | Timer                                 | LM555CM                 | Fairchild    | SO8         | 1   |  |  |
| U3                  | FAN3226T   | Driver                                | FAN3226TM               | Fairchild    | SO8         | 1   |  |  |
| U4                  | MIC5239    | LDO                                   | MIC5239-5.0YS           | Micrel       | SOT-<br>223 | 1   |  |  |
| J3                  |            | Generic 2-Pin SIP .100<br>Centers     |                         |              |             | 1   |  |  |
| J5                  |            | Testpin, Gold, 40 mil                 | 3103-2-00-21-00-00-08-0 | Mill-Max     |             | 1   |  |  |
| Q1-Q2               | FDMS7658AS | MOSFET                                | FDMS7658AS              | Fairchild    | MLP5x6      | 1   |  |  |
| S1                  | 209-2MS    | Switch DIP Top Slide<br>Flush 6-POS   | 209-2MS                 | CTS          | DIP4        | 1   |  |  |
| Q1-Q2               | FDMS7658AS | MOSFET                                | FDMS7658AS              | Fairchild    | MLP5x6      | 2   |  |  |



## 10. Revision History

| Rev.  | Date          | Description                                                            |
|-------|---------------|------------------------------------------------------------------------|
| 0.0.1 | November 2012 | Initial draft of FAN23SV04T                                            |
| 0.0.2 | March 2013    | Updated with changes of FAN23SV04T EB Rev0.1                           |
| 0.0.3 | May 2013      | Added PCB structure. Updated schematic & BOM                           |
| 1.0.0 | June 2013     | Added EVB# on page.1 & Release                                         |
| 1.1   | May 2015      | Removed "Integrated TinyBuck" & Changed TOP side picture of PCB layout |

#### WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### **EXPORT COMPLIANCE STATEMENT**

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.