eescale Semiconductor

Technical Data

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

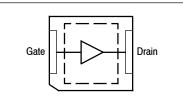
RF power transistor designed for pulse applications operating at frequencies between 960 and 1400 MHz, 1% to 20% duty cycle. This device is suitable for aerospace and defense applications such as DME, IFF, and L-band radar.

 Typical Pulse Performance: V_{DD} = 50 Vdc, I_{DQ} = 10 mA, P_{out} = 10 W Peak (2 W Avg.), f = 1090 MHz, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 25 dB Drain Efficiency — 69%

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Qualified Up to a Maximum of 50 V_{DD} Operation
- Integrated ESD Protection
- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- In Tape and Reel. R4 Suffix = 100 Units, 16 mm Tape Width, 7-inch Reel.

Document Number: MMRF1019N Rev. 0, 7/2014


VRoHS

MMRF1019NR4

1090 MHz, 10 W, 50 V PULSE RF POWER LDMOS TRANSISTOR

Note: The center pad on the backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +100	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	Т _С	150	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(1,2)	Unit
Thermal Resistance, Junction to Case Case Temperature 79°C, 10 W Peak, 100 μsec Pulse Width, 20% Duty Cycle	$Z_{\theta JC}$	1.6	°C/W

1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

Table 3. ESD Protection Characteristics

Test Methodology		Cla	ass				
Human Body Model (per JESD22-A114) Machine Model (per EIA/JESD22-A115) Charge Device Model (per JESD22-C101)			1C A				
			Table 4. Moisture Sensitivity Level				
Test Methodology	Rating	Packag	je Peak Temp	perature	Unit		
Per JESD22-A113, IPC/JEDEC J-STD-020	3		260		°C		
Table 5. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise})$	noted)						
Characteristic	Symbol	Min	Тур	Max	Unit		
Off Characteristics			1		1		
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAde		
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 7 \text{ mA})$	V _{(BR)DSS}	110	—	—	Vdc		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	50	μAd		
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	2.5	mA		
On Characteristics				•			
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 36 μ Adc)	V _{GS(th)}	1	1.7	2.5	Vdc		
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 10 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	1.7	2.4	3.2	Vdc		
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 70 mAdc)	V _{DS(on)}		0.2	—	Vdo		
Dynamic Characteristics	·····						
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.1	-	pF		
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	3.38	-	pF		
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	9.55	—	pF		
Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 100 µsec Pulse Width, 20% Duty Cycle	Vdc, I _{DQ} = 10 mA,	P _{out} = 10 W	/ Peak (2 W A	Avg.), f = 1090	0 MHz,		
Power Gain	G	22	25	29	dB		

Power Gain	G _{ps}	23	25	28	dB
Drain Efficiency	η _D	66	69	_	%
Input Return Loss	IRL	_	-12	-8	dB

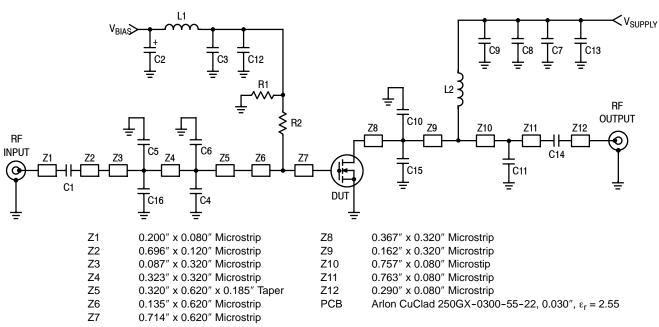


Figure 2. MMRF1019NR4 Test Circuit Schematic

Part	Description	Part Number	Manufacturer
C1, C9, C12	43 pF Chip Capacitors ATC100B430JT500XT		ATC
C2	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
C3, C8	2.2 µF, 100 V Chip Capacitors	GQM1885C2A2R2CB01B	Murata
C4, C6	7.5 pF Chip Capacitors	ATC100B7R5CT500XT	ATC
C5, C16	3.0 pF Chip Capacitors	ATC100B3R0CT500XT	ATC
C7	0.1 µF Chip Capacitor C1206C104K5RACTR		Kemet
C10, C15	0.3 pF Chip Capacitors	ATC100B0R3BT500XT	ATC
C11	5.6 pF Chip Capacitor ATC100B5R6CT500XT		ATC
C13	470 μF, 63 V Chip Capacitor 477KXM063M		Illinois Capacitor
C14	47 pF Chip Capacitor	ATC100B470JT500XT	ATC
L1	8 nH Inductor A03TKLC		Coilcraft
L2	5 nH Inductor	A02TKLC	Coilcraft
R1	3300 Ω, 1/4 W Chip Resistor	p Resistor CRCW12063301FKEA	
R2	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay

Table 6. MMRF1019NR4 Test Circuit Con	ponent Designations and Values
	iperione beergnanene ana varaee

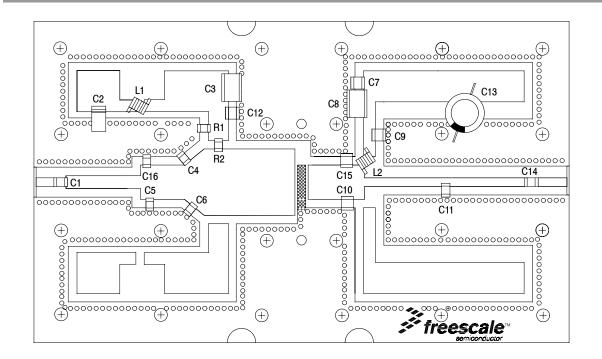
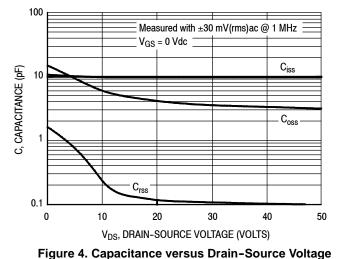



Figure 3. MMRF1019NR4 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

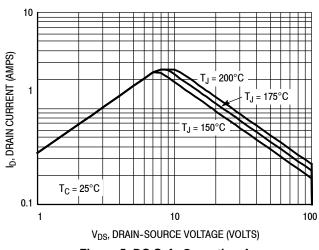
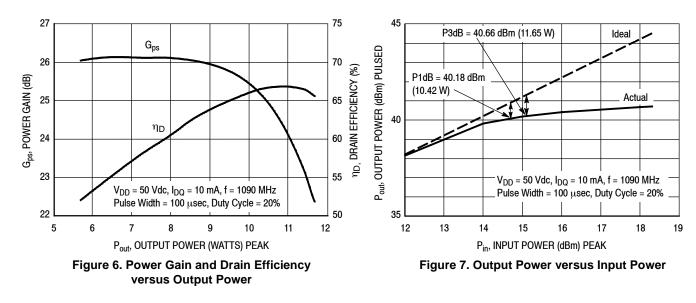
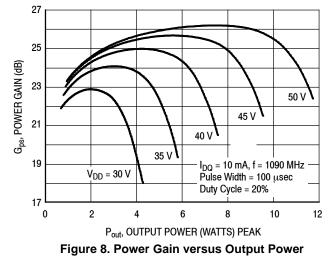




Figure 5. DC Safe Operating Area

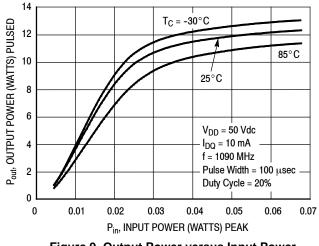
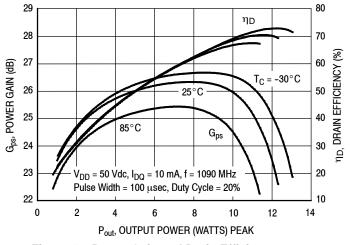
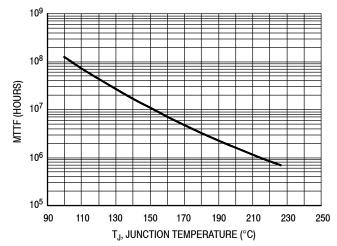
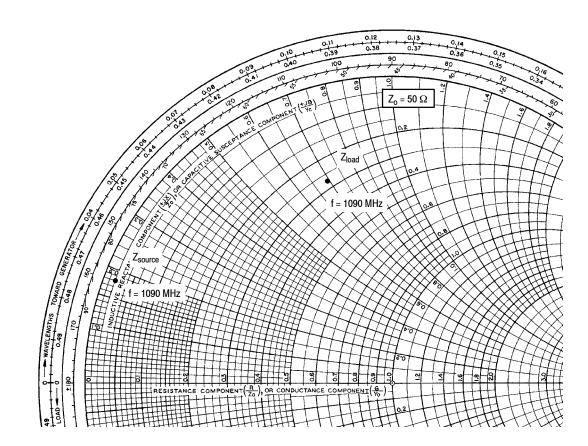


Figure 9. Output Power versus Input Power

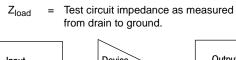
TYPICAL CHARACTERISTICS


Figure 10. Power Gain and Drain Efficiency versus Output Power

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 50 Vdc, P_{out} = 10 W Peak, Pulse Width = 100 μ sec, Duty Cycle = 20%, and η_D = 69%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.



 V_{DD} = 50 Vdc, I_{DQ} = 10 mA, P_{out} = 10 W Peak

f	Z _{source}	Z _{load}
MHz	Ω	Ω
1090	1.15 + j8.96	13.47 + j34.32

Z_{source} = Test circuit impedance as measured from gate to ground.

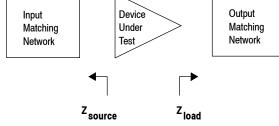
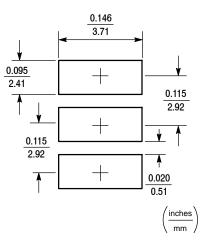



Figure 12. Series Equivalent Source and Load Impedance

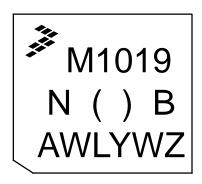
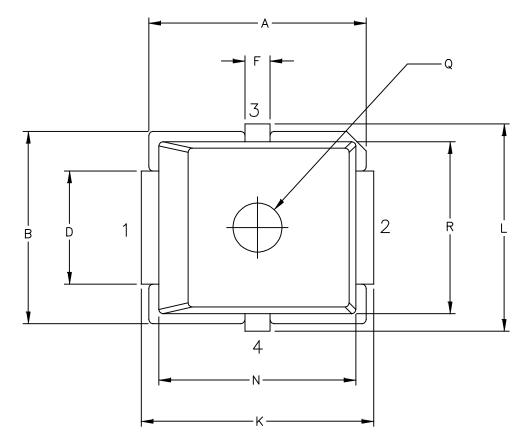
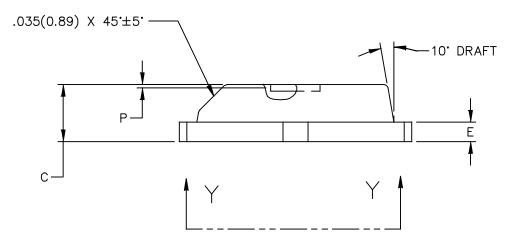
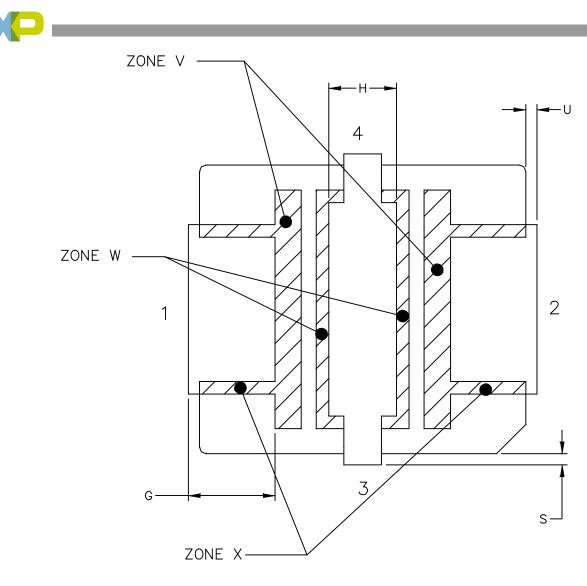




Figure 14. Product Marking



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT N	0: 98ASB15740C	REV: D
PLD-1.5	CASE NUMBE	R: 466-03	31 MAR 2005
	STANDARD: N	ON-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NC	T TO SCALE
TITLE:		DOCUMENT NO): 98ASB15740C	REV: D
PLD-1.5		CASE NUMBER	: 466–03	31 MAR 2005
		STANDARD: NO	N-JEDEC	

MMRF1019NR4

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 3. RESIN BLEED/FLASH ALLOWABE IN ZONES V, W AND X..

STYLE 1:

1	—	DRAIN
2	_	GATE
З	_	SOURCE
4	_	SOURCE
	2 3	2 – 3 –

	IN	СН	МІІ	LIMETER			INCH	M	IILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.255	.265	6.48	6.73	Q	.055	.063	1.40	0 1.60
В	.225	.235	5.72	5.97	R	.200	.210	5.08	3 5.33
С	.065	.072	1.65	1.83	s	.006	.012	0.15	5 0.31
D	.130	.150	3.30	3.81	U	.006	.012	0.15	5 0.31
E	.021	.026	0.53	0.66	ZONE V	.000	.021	0.00	0.53
F	.026	.044	0.66	1.12	ZONE W	.000	.010	0.00	0.25
G	.050	.070	1.27	1.78	ZONE X	.000	.010	0.00	0.25
н	.045	.063	1.14	1.60					
J	.160	.180	4.06	4.57					
ĸ	.273	.285	6.93	7.24					
L	.245	.255	6.22	6.48					
N	.230	.240	5.84	6.10					
Р	.000	.008	0.00	0.20					
© FI		LE SEMICONDUCTOR, INC. MECHANICAL (L OUTI	_INE	PRINT VERS	SION NC	OT TO SCALE
TITLE:				DOCUMENT NO: 98ASB15740C REV: D			REV: D		
		PLD-1	.5		CASE	NUMBER	: 466-03		31 MAR 2005
						ARD: NC	N-JEDEC		

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	July 2014	Initial Release of Data Sheet			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

