BUH50G

Switch-mode NPN Silicon Planar Power Transistor

The BUH50G has an application specific state-of-art die designed for use in 50 W HALOGEN electronic transformers and switch-mode applications.

Features

- Improved Efficiency Due to Low Base Drive Requirements:

High and Flat DC Current Gain h_{FE}
Fast Switching

- ON Semiconductor Six Sigma Philosophy Provides Tight and Reproductible Parametric Distributions
- Specified Dynamic Saturation Data
- Full Characterization at $125^{\circ} \mathrm{C}$
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEO }}$	500	Vdc
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {CBO }}$	800	Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {CES }}$	800	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	9	Vdc
Collector Current - Continuous	I_{C}	4	Adc
Collector Current - Peak (Note 1)	I_{CM}	8	Adc
Base Current - Continuous	I_{B}	2	Adc
Base Current \quad - Peak (Note 1)	I_{BM}	4	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above 25	P_{D}	50	W
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

[^0]
ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
POWER TRANSISTOR 4 AMPERES 800 VOLTS, 50 WATTS

TO-220
CASE 221A STYLE 1

BUH50G

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$)	$\mathrm{V}_{\text {CEO(sus) }}$	500			Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\text {CEO }}$			100	$\mu \mathrm{Adc}$
$\begin{array}{ll} \hline \text { Collector Cutoff Current } & @ T_{C}=25^{\circ} \mathrm{C} \\ \left(\mathrm{~V}_{C E}=\text { Rated } \mathrm{V}_{\mathrm{CES}}, \mathrm{~V}_{E B}=0\right) & @ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{array}$	$I_{\text {CES }}$			$\begin{gathered} \hline 100 \\ 1000 \end{gathered}$	$\mu \mathrm{Adc}$
Emitter-Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=9 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{I}_{\text {EBO }}$			100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.33 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.66 \mathrm{Adc}\right) \quad 25^{\circ} \mathrm{C} \\ & \left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.66 \mathrm{Adc}\right) \quad 100^{\circ} \mathrm{C} \end{aligned}$		$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		$\begin{aligned} & 0.86 \\ & 0.94 \\ & 0.85 \end{aligned}$	1.2 1.6 1.5	Vdc
$\begin{array}{r} \text { Collector-Emitter Saturation Voltage } \\ \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.33 \mathrm{Adc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.66 \mathrm{Adc}\right) \end{array}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE(sat) }}$		0.2	0.5	Vdc
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 0.32 \\ & 0.29 \end{aligned}$	0.6 0.7	
$\left(\mathrm{I}_{\mathrm{C}}=3 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{Adc}\right)$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			0.5	1	
DC Current Gain ($\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$)$\left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right)$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{h}_{\text {FE }}$	7	13		-
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		5	10		-

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth $\left(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}\right)$	f_{T}	4			MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{ob}		50	100	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{EB}}=8 \mathrm{Vdc}\right)$	C_{ib}		850	1200	pF

DYNAMIC SATURATION VOLTAGE

Dynamic Saturation Voltage: Determined 1 s and 3μ s respectively after rising $\mathrm{l}_{\mathrm{B} 1}$ reaches 90% of final $I_{B 1}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=0.33 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{gathered}$	@ 1 us	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE} \text { (dsat) }}$	1.75 5	
		@ $3 \mu \mathrm{~s}$	$@ T \mathrm{C}=25^{\circ} \mathrm{C}$ $@ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.3 0.5	
	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=0.66 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{gathered}$	@ 1 us	$@ T_{C}=25^{\circ} \mathrm{C}$ $@ T_{\mathrm{C}}=125^{\circ} \mathrm{C}$		6 14	
		@ $3 \mu \mathrm{~s}$	$\begin{aligned} & @ T_{C}=25^{\circ} \mathrm{C} \\ & @ T_{C}=125^{\circ} \mathrm{C} \end{aligned}$		0.75 4	V

SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=20 \mu \mathrm{~s}$)

Turn-on Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 2}=0.4 \mathrm{Adc} \\ \mathrm{~V}_{\mathrm{CC}}=125 \mathrm{Vdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	95	250	ns
Turn-off Time		$@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	2.5	3.5	$\mu \mathrm{S}$
Turn-on Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 2}=1 \mathrm{Adc} \\ \mathrm{~V}_{\mathrm{CC}}=125 \mathrm{Vdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	110	250	ns
Turn-off Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	0.95	2	$\mu \mathrm{S}$
Turn-on Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.3 \mathrm{Adc} \\ I_{\mathrm{B} 2}=0.3 \mathrm{Adc} \\ \mathrm{~V}_{\mathrm{CC}}=125 \mathrm{Vdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	100	200	ns
Turn-off Time		$@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	2.9	3.5	$\mu \mathrm{s}$

SWITCHING CHARACTERISTICS: Inductive Load (V ${ }_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$)

Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 2}=1 \mathrm{Adc} \end{aligned}$	$@ T_{C}=25^{\circ} \mathrm{C}$ $@ T_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{f}	$\begin{aligned} & 80 \\ & 95 \end{aligned}$	150	ns
Storage Time		$\begin{aligned} @ T \mathrm{C} & =25^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{C}} & =125^{\circ} \mathrm{C}\end{aligned}$ $@ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {s }}$	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	2.5	$\mu \mathrm{S}$
Crossover Time		$@ T \mathrm{C}=25^{\circ} \mathrm{C}$ $@$ $\mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	$\begin{aligned} & 150 \\ & 180 \end{aligned}$	300	ns
Fall Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 1}=0.66 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 2}=1 \mathrm{Adc} \end{gathered}$	$\begin{aligned} & @ T_{C}=25^{\circ} \mathrm{C} \\ & @ T_{C}=125^{\circ} \mathrm{C} \end{aligned}$	t_{f}	$\begin{gathered} \hline 90 \\ 100 \end{gathered}$	150	ns
Storage Time		$\begin{aligned} & @ T_{C}=25^{\circ} \mathrm{C} \\ & @ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\text {s }}$	$\begin{aligned} & 1.7 \\ & 2.5 \end{aligned}$	2.75	$\mu \mathrm{S}$
Crossover Time		$\begin{aligned} & @ T_{C}=25^{\circ} \mathrm{C} \\ & @ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	t_{c}	$\begin{aligned} & \hline 190 \\ & 220 \end{aligned}$	350	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BUH50G

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1 Volt

Figure 3. Collector Saturation Region

Figure 5. Collector-Emitter Saturation Voltage

Figure 2. DC Current Gain @ 5 Volt

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Base-Emitter Saturation Region

BUH50G

TYPICAL STATIC CHARACTERISTICS

Figure 7. Base-Emitter Saturation Region

Figure 8. Capacitance

TYPICAL SWITCHING CHARACTERISTICS

Figure 9. Resistive Switching, t_{on}

Figure 11. Inductive Storage Time, $\mathrm{t}_{\text {si }}$

Figure 10. Resistive Switch Time, $\mathrm{t}_{\text {off }}$

Figure 12. Inductive Storage Time,
$t_{c} \& t_{f i} @ I_{C} / I_{B}=3$

BUH50G

TYPICAL CHARACTERISTICS

Figure 13. Inductive Switching, $\mathrm{t}_{\mathrm{c}} \& \mathrm{t}_{\mathrm{fi}} @ \mathrm{I}_{\mathrm{C}} \mathrm{I}_{\mathrm{B}}=5$

Figure 15. Inductive Fall Time

Figure 14. Inductive Storage Time

Figure 16. Inductive Crossover Time

Figure 17. Forward Power Derating

BUH50G

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 20 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be de-rated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second breakdown limitations do not de-rate the same as thermal limitations. Allowable current at the voltages shown on Figure 20 may be found at any case temperature by using the appropriate curve on Figure 17.
$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 22. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 21). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

TYPICAL CHARACTERISTICS

Figure 18. Dynamic Saturation Voltage

Figure 19. Inductive Switching Measurements

Figure 20. Forward Bias Safe Operating Area

Figure 21. Reverse Bias Safe Operating Area

BUH50G

TYPICAL CHARACTERISTICS

Table 1. Inductive Load Switching Drive Circuit

$\mathbf{V}_{\text {(BR)CEO(sus) }}$	Inductive Switching	RBSOA
$L_{=10 \mathrm{mH}}$	$\mathrm{L}=200 \mu \mathrm{H}$	$\mathrm{L}=500 \mu \mathrm{H}$
$\mathrm{R}_{\mathrm{B} 2}=\infty$	$R_{B 2}=0$	$R_{B 2}=0$
$\mathrm{~V}_{\mathrm{CC}}=20 \mathrm{Volts}$	$\mathrm{V}_{\mathrm{CC}}=15$ Volts	$\mathrm{V}_{\mathrm{CC}}=15$ Volts
$\mathrm{I}_{\mathrm{C}(\mathrm{pk})}=100 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{B} 1}$ selected for	$\mathrm{R}_{\mathrm{B} 1}$ selected for
	desired $\mathrm{I}_{\mathrm{B} 1}$	desired $\mathrm{I}_{\mathrm{B} 1}$

Figure 22. Typical Thermal Response ($\mathrm{Z}_{\theta \mathrm{Jc}}(\mathrm{t})$) for BUH50

BUH50G

PACKAGE DIMENSIONS

TO-220
CASE 221A-09
ISSUE AH

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

> ON Semiconductor and the ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli@@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

